Oxidative stress affects many different cells and tissues, contributing to a wide variety of diseases. The presence of underlying oxidative stress may be revealed in commonly available blood chemistry panels in which biomarker fluctuations may provide clues to the presence of this underlying “smoldering ember.”
Clinical assessment of oxidative stress risk should begin with a comprehensive history that can reveal exposure to major risk factors, including[1]
A detailed history should help provide a general picture of antioxidant capacity by reviewing diet and supplement intake (e.g. vitamins A, C, E, selenium, phytonutrients, glutathione precursors, etc.). Comprehensive blood chemistry panels should then be reviewed and assessed within the framework of the patient’s exposure, history, and current clinical picture.
Recognizing oxidative stress early in its pathological course can help reduce associated tissue damage and dysfunction and add a valuable tool to every clinician’s toolbox.
General indicators of oxidative stress on a blood chemistry test may include:
Up Next - Oxidative Stress part 3 - Specialized Markers
[1] Agarwal, Ashok, and Ahmad Majzoub. “Laboratory tests for oxidative stress.” Indian journal of urology : IJU : journal of the Urological Society of India vol. 33,3 (2017): 199-206.
[2] Danielski, Michael, et al. "Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy." American journal of kidney diseases 42.2 (2003): 286-294.
[3] Ellidag, Hamit Yasar et al. “Oxidative stress and ischemia-modified albumin in chronic ischemic heart failure.” Redox report : communications in free radical research vol. 19,3 (2014): 118-23.
[4] Sitar, Mustafa Erinç et al. “Human serum albumin and its relation with oxidative stress.” Clinical laboratory vol. 59,9-10 (2013): 945-52.
[5] Ihara, Hiroshi et al. “Antioxidant capacities of ascorbic acid, uric acid, alpha-tocopherol, and bilirubin can be measured in the presence of another antioxidant, serum albumin.” Journal of clinical laboratory analysis vol. 18,1 (2004): 45-9.
[6] Smith, L L. “Another cholesterol hypothesis: cholesterol as antioxidant.” Free radical biology & medicine vol. 11,1 (1991): 47-61.
[7] Butterfield, J D Jr, and C P McGraw. “Free radical pathology.” Stroke vol. 9,5 (1978): 443-5.
[8] Zhang, Zhiying et al. “Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis.” Nutrients vol. 9,8 829. 3 Aug. 2017,
[9] Karabacak, Mustafa, et al. "Low HDL Cholesterol Situations is Characterised by Elevated Oxidative Stress." Journal of the American College of Cardiology 62.18 Supplement 2 (2013): C181.
[10] Qasim, Neha, and Riaz Mahmood. “Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.” PloS one vol. 10,11 e0141975. 10 Nov. 2015,
[11] Gautam, Nandeslu et al. “Age associated oxidative damage in lymphocytes.” Oxidative medicine and cellular longevity vol. 3,4 (2010): 275-82.
[12] Assinger, Alice. “Platelets and infection - an emerging role of platelets in viral infection.” Frontiers in immunology vol. 5 649. 18 Dec. 2014,
[13] Zhang, Bing, and James L Zehnder. “Oxidative stress and immune thrombocytopenia.” Seminars in hematology vol. 50,3 (2013): e1-4.
[14] Iyer, Krishna S, and Sanjana Dayal. “Platelet antioxidants: A conundrum in aging.” EBioMedicine vol. 47 (2019): 29-30.
[15] Rajappa, Medha et al. “Platelet oxidative stress and systemic inflammation in chronic spontaneous urticaria.” Clinical chemistry and laboratory medicine vol. 51,9 (2013): 1789-94.
[16] El Haouari, Mohammed. “Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients.” Current medicinal chemistry vol. 26,22 (2019): 4145-4165.
[17] Liu, Demin et al. “Effects and Mechanisms of Vitamin C Post-Conditioning on Platelet Activation after Hypoxia/Reoxygenation.” Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie vol. 47,2 (2020): 110-118.
[18] Avinash, S S et al. “Advanced oxidation protein products and total antioxidant activity in colorectal carcinoma.” Indian journal of physiology and pharmacology vol. 53,4 (2009): 370-4.
[19] Nandakumar, D N et al. “Activation of NF-kappaB in lymphocytes and increase in serum immunoglobulin in hyperthyroidism: possible role of oxidative stress.” Immunobiology vol. 213,5 (2008): 409-15.
[20] Javed, Mehjbeen et al. “Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water.” Scientific reports vol. 7,1 1675. 10 May. 2017,
[21] Bracht, Adelar et al. “Oxidative changes in the blood and serum albumin differentiate rats with monoarthritis and polyarthritis.” SpringerPlus vol. 5 36. 15 Jan. 2016,
[22] Glantzounis, G K et al. “Uric acid and oxidative stress.” Current pharmaceutical design vol. 11,32 (2005): 4145-51.
[23] Ok, Eun Jeong et al. “Association between Serum Uric Acid and Oxidative Stress in Korean Adults.” Korean journal of family medicine vol. 39,5 (2018): 295-299.
[24] Sautin, Yuri Y, and Richard J Johnson. “Uric acid: the oxidant-antioxidant paradox.” Nucleosides, nucleotides & nucleic acids vol. 27,6 (2008): 608-19.
[25] Tomaro, María L, and Alcira M del C Batlle. “Bilirubin: its role in cytoprotection against oxidative stress.” The international journal of biochemistry & cell biology vol. 34,3 (2002): 216-20.
[26] Zelenka, Jaroslav et al. “Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress.” Biochimie vol. 94,8 (2012): 1821-7.
[27] Inoguchi, Toyoshi et al. “Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: a new aspect on old molecule.” Diabetology international vol. 7,4 338-341. 21 Sep. 2016,
[28] Novotný, Ladislav, and Libor Vítek. “Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies.” Experimental biology and medicine (Maywood, N.J.) vol. 228,5 (2003): 568-71.
[29] Le, Ngoc-Anh. “Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis.” International journal of molecular sciences vol. 16,1 401-19. 26 Dec. 2014,
[30] Yang, Rui-Li et al. “Increasing Oxidative Stress with Progressive Hyperlipidemia in Human: Relation between Malondialdehyde and Atherogenic Index.” Journal of clinical biochemistry and nutrition vol. 43,3 (2008): 154-8.
[31] Turkdogan, Kenan Ahmet et al. “Association between oxidative stress index and serum lipid levels in healthy young adults.” JPMA. The Journal of the Pakistan Medical Association vol. 64,4 (2014): 379-81.
[32] Di Renzo, Laura et al. “Changes in LDL Oxidative Status and Oxidative and Inflammatory Gene Expression after Red Wine Intake in Healthy People: A Randomized Trial.” Mediators of inflammation vol. 2015 (2015): 317348.
[33] Liguori, Ilaria et al. “Oxidative stress, aging, and diseases.” Clinical interventions in aging vol. 13 757-772. 26 Apr. 2018,
[34] Abramson, Jerome L et al. “Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease.” Atherosclerosis vol. 178,1 (2005): 115-21.
[35] Liguori, Ilaria et al. “Oxidative stress, aging, and diseases.” Clinical interventions in aging vol. 13 757-772. 26 Apr. 2018,
[36] Chehaibi, Khouloud et al. “Correlation of Oxidative Stress Parameters and Inflammatory Markers in Ischemic Stroke Patients.” Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association vol. 25,11 (2016): 2585-2593.
[37] Kell, Douglas B, and Etheresia Pretorius. “Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells.” Metallomics : integrated biometal science vol. 6,4 (2014): 748-73.